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13003 Marseille, France

e-mail: dauchy@marius.univ-mrs.fr
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The wake of a finite cylinder with free ends and an aspect ratio of 21.4 is simu-
lated in three-dimensions and analysed theoretically. Close to the primary-instability
threshold, the flow is shown to settle on a limit cycle with a uniform frequency
throughout the flow-field. About 20% above the primary-instability threshold, a
secondary instability sets in and the limit cycle becomes unstable. The new attractor
of the flow can be identified as a limit T 2-torus characterized by two incommensurate
frequencies. One of them is shown to evolve continuously from the primary-instability
frequency, the other one, about 17 times smaller near the secondary-instability thresh-
old, generates a slow modulation of the oscillations in the wake. The limit cycle
and the limit torus are described in terms of their Fourier expansion and the spatial
distribution of the most relevant Fourier components is investigated. The theoretical
analysis and numerical results given shed some light on the mechanisms underlying a
number of known but not satisfactorily explained three-dimensional effects in wakes
of finite cylinders such as the ambiguity in the dominant Strouhal frequency, the
existence of zones with different frequencies spanwise in the wake, the discreteness
of coexisting frequencies observed in the wake as well as the spatial uniformity of
the beating period. They moreover explain the Reynolds number variation of these
effects and identify the recirculation around the cylinder ends as basically responsible
for the onset of the secondary instability. The results are compared to the case of
a cylinder with aspect ratio of 10.7 to determine the basic trends in aspect ratio
dependence. It is shown that qualitatively the same behaviour is obtained, but that
the secondary-instability threshold is shifted significantly upward to about twice the
primary-instability threshold. Simulations of the wake of a finite NACA wing with
incidence show that the form of the cross-section plays a minor role.

1. Introduction
1.1. Problems of investigation of the Bénard–von Kármán instability

The intriguing regularity of the cylinder wake has attracted the attention of numer-
ous researchers for over hundred years since the phenomenon was first described by
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Strouhal. The ideal configuration giving rise to the regular vortex shedding is that of
the infinite circular cylinder. The Bénard–von Kármán instability, which is at its ori-
gin, conserves the translational invariance along the cylinder axis reducing the flow to
two dimensions and making the numerical description of the wake of an infinite cylin-
der particularly easy. Two-dimensional simulations (e.g. Braza, Chassaing & Ha Minh
1986; Karniadakis & Triantafyllou 1989; Dušek, Le Gal & Fraunie 1994b) not only re-
produced accurately the basic flow characteristics obtained experimentally such as the
Strouhal number and the critical Reynolds number, but also led to a detailed explana-
tion of the nonlinear mechanisms governing the instability development (Carte, Dušek
& Fraunie 1996) and a detailed description of its spatial characteristics (Dušek 1996).

The realization of an experimental set-up providing strictly two-dimensional vortex
shedding has been, in contrast, a difficult challenge for generations of experimenters.
The measurements of Roshko (1954) were carried out on cylinders with an ex-
tremely high aspect ratio. Subsequent experimental attempts to confirm Roshko’s
phenomenological law concerning the Reynolds number dependence of the vortex
shedding frequency brought evidence of the complicated nature of wakes of real
finite cylinders making the interpretation of the experimental results difficult (Tritton
1959). The progress in experimental techniques shed light on the three-dimensional end
effects and brought them under control. Gaster (1971), Gerich & Eckelmann (1982)
and Eisenlohr & Eckelmann (1989) introduced end plates fixed to the cylinder to
control the end effects. Other alternatives consist of placing transverse cylinders up-
stream of the main one (Hammache & Gharib 1989) or short coaxial hollow cylinders
at the ends (Eisenlohr & Eckelmann 1989) or of investigating configurations without
end effects such as rings normal to the flow direction (Leweke & Provansal 1995).

The progress in experimental techniques allowed stable parallel vortex shedding to
be achieved in a wide interval of Reynolds numbers between the instability threshold
at Re = 46 and the onset of the transition to three-dimensionality and turbulence
at Re ≈ 180 with reasonable aspect ratios of cylinders. Very fine experiments and
accurate data (Williamson 1989, 1992 and Williamson & Prasad 1993) could thus be
obtained. The perfection of the experimental two-dimensionality achieved is confirmed
by the very good agreement between experiments and numerical simulations (see
Williamson 1989 and Williamson & Prasad 1993 and the numerical data in Dušek et
al. 1994b and Dušek 1996). The success in controlling the three-dimensional effects in
the cylinder wake had, however, a negative impact on the effort to understand them.

1.2. Present trends of study of three-dimensional effects

In contrast to earlier experimental papers (Tritton 1959; Gaster 1969, 1971; Gerich &
Eckelmann 1982 and Eisenlohr & Eckelmann 1989), recent work is mostly concerned
with the onset of three-dimensionality in an infinite (two-dimensional) configura-
tion, the techniques of elimination of three-dimensional end effects being used in
experimental set-ups. This research seems to have been triggered by Sreenivasan
(1985) who found the Ruelle–Takens–Newhouse (Ruelle & Takens 1971; Newhouse,
Ruelle & Takens 1978) scenario of transition in the cylinder wake for very low
Reynolds numbers. The observation of Sreenivasan was attributed later by Van Atta
& Gharib (1987) to an aeroelastic effect, but other physical or numerical effects yield
the same scenario (e.g. Olinger 1990; Abarbanel et al. 1991; Williamson & Prasad
1993). Sreenivasan’s work also stimulated a substantial numerical (Karniadakis &
Triantafyllou 1992; Noack, König & Eckelmann 1993; Noack & Eckelmann 1994;
Dušek, Fraunie & Seror 1994b and Barkley & Henderson 1996) and experimental
(Williamson 1992; Albarède & Provansal 1995; Leweke & Provansal 1995) effort
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to investigate the transition of the cylinder wake (or the wake of a thin torus) to
turbulence. The contradictions characterizing these works can be explained by the
different configurations considered to simulate the infinite geometry. The numerical
results based on simulations of the cylinder wake in spanwise periodic configurations
predict, systematically, a period doubling at the transition to three-dimensionality
(Karniadakis & Triantafyllou 1992; Dušek et al. 1994a). The experimental results
give, rather, evidence of a low incommensurate frequency appearing almost from
the onset of vortex shedding near the end of finite cylinders. It has been clearly
recognized that these effects are due to the presence of the cylinder ends (Gerich &
Eckelmann 1982; König, Eisenlohr & Eckelmann 1990, 1992; Brede et al. 1994).
However, even in experiments where the end effects have been suppressed by the
experimental set-up a lower frequency still sets in at Reynolds numbers at which
the transition to turbulence is observed (at Re = 180 in Williamson 1992 for a long
cylinder and at about Re = 200 in Leweke & Provansal 1995 for a torus). Among the
cited papers, the only ‘perfectly infinite’ cylinder configuration is that of Noack et al.
(1993), Noack & Eckelmann (1994) and Barkley & Henderson (1996). A numerical
instability analysis shows unambiguously that the onset of three-dimensionality in the
infinite cylinder wake is due to a real bifurcation, i.e. that no new frequency arises.
The bifurcation yields translational symmetry breaking in the spanwise direction.
Two different modes have been identified experimentally and numerically as the most
unstable at the transition to three-dimensionality in the infinite configuration: an
‘A-mode’ characterized by a critical wavelength of about 4 (Williamson 1992; Barkley
& Henderson 1996) and a ‘C-mode’ with about half that wavelength (Noack et al.
1993) the discrepancy being explainable by different level of spatial resolution used
in the cited numerical papers (Zhang et al. 1995). The role of end effects seems,
however, to prevail in the transition of wakes of bodies with finite geometries (Zhang
et al. 1995).

1.3. Three-dimensional effects in wakes of finite objects at low Reynolds number

Wakes forced with frequencies incommensurate with the natural vortex shedding are
known to present a strong lock-in trend making the natural frequency disappear in
favour of a rational frequency ratio. For the description of lock-in effects in wakes of
oscillating cylinders in terms of nonlinear dynamics, see Olinger & Sreenivasan (1988)
and Olinger (1990). Similarly the limit cycle character of the primary instability of an
unforced infinite cylinder wake has been attributed (Dušek et al. 1994b) to the trend
of the vortex shedding frequency to be uniform in space.

In unforced wakes of finite cylinders the presence of two distinct frequencies is very
common and the lock-in effects seem to be absent. Such behaviour, characterized
by two distinct frequencies at the same location of the wake yielding modulation
(beatings) in signals of velocities and of different dominant frequencies in various
regions of three-dimensional wakes, were first reported by Tritton (1959), Gaster (1969,
1971) and Gerich & Eckelmann (1982) for Reynolds numbers lying significantly below
the transition threshold. Tritton (1959) carried out hot-wire measurements at different
stations downstream of the cylinder and at several distances off the symmetry plane
containing the cylinder axis but did not study systematically the spanwise variations
of the velocity oscillations. He found a discontinuity in the Strouhal vs. Reynolds
number curve that was explained by the switching from one dominant frequency (a
‘low speed mode’) to a slightly lower one (a ‘high speed mode’). The difference of the
modes was attributed to a different mechanism of the vortex shedding. The low-speed
mode was believed to originate in the wake instability whereas the high-speed mode
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was interpreted as a result of shedding of attached eddies off the cylinder wall. The
transition between them was characterized by marked, often periodic, beatings. The
period of the beatings was found to be about 6 to 14 times that of the period of basic
oscillations. Strongly three-dimensional deformations of vortex lines were pointed
out. A similar transition between modes with different frequencies was described by
Berger (1964).

An interesting study of the relation between a three-dimensional geometry and the
spatial variations of the vortex shedding frequency was given in Gaster (1969). It was
assumed that the vortex shedding frequency may vary spanwise due to variations of
the local Reynolds number of the obstacle. Such variations are always present at least
near the ends whether the latter are tapered to make the variation more progressive
or not. To make the argument more explicit, Gaster measured the wake of a slender
cone for which the local Reynolds number varied spanwise proportionally to its
length. Very clean periodic beatings were observed. The frequency of beatings was
found to increase proportionally to the Reynolds number based on the cone length
and to be the same throughout the flow (independently of the spanwise position of
the probe), i.e. as stated in Gaster (1969): “the low-frequency modulation is not a
local phenomenon”. In contrast, the rapid vortex shedding frequency was observed
to obey Roshko’s law (Roshko 1954) if the local Strouhal number (based on the local
cone diameter) was plotted versus the local Reynolds number along the span of the
cone. The question may arise how the ‘local’ frequency was determined in the presence
of beatings. As specified in Gaster (1969), this was done by taking the frequency
near the maxima of the beatings. A theoretical model giving an explanation of the
beatings and of the spanwise ‘locality’ of the vortex shedding frequency as a result
of three-dimensional effects of the spanwise variation of the local Reynolds number
was presented. To confirm this conclusion, the behaviour of the wake of a cone was,
moreover, compared to that of a perfect cylinder in the same experimental conditions
and it was shown that no beatings could be detected in a wide range of Reynolds
number in this case.

The experiments of Tritton (1959) and Gaster (1969) triggered a controversy
concerning the interpretation of the origin of the observed beatings (or irregularities)
in the vortex shedding (Tritton 1971; Gaster 1971). It lead Gaster to refine his
experiment and to present the following further interesting conclusions (Gaster 1971).
Regular periodic shedding was found to occur in several cells (up to four) with jumps
in frequency between neighbouring cells for a very slightly tapered cylinder. The
beatings observed in the transition regions between neighbouring cells corresponded
precisely to the difference of the frequencies of the neighbouring cells. A similar
pattern resulted in the flow around a perfect cylinder placed in a flow with a slight
spanwise shear. When the flow velocity was varied the cells were observed to move
along the span. As a result, slight fluctuations of the flow velocity occasioned
displacements of the cells on a very gradually tapered cylinder also and the sensitivity
of the pattern to the flow fluctuations was the higher the more gradual the spanwise
variation of the diameter was. The wandering of the cells could be stopped by placing
end plates on the cylinder.

The influence of end effects on the vortex shedding was further analysed by Gerich
& Eckelmann (1982). They showed that, although a continuous law governing the
Strouhal vs. Reynolds number dependence could be recovered using end plates and
although the beatings could thus be eliminated from the central zone of the cylinder
span, a zone, called the affected zone, characterized by a lower frequency is always
present near the ends of the cylinder whether these ends are free or delimited by
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end plates. A strong ‘lock-in’ effect allowing only two frequencies in the wake was
shown in the whole affected zone where the lower frequency was also uniform. In
the region of transition between the central and the affected zone marked beatings
could be observed. It is important to note that Gerich & Eckelmann did not find the
onset of beatings to coincide with the onset of the vortex shedding that occurred in
their configuration at Re1 ≈ 50. A narrow interval Re1 < Re < Re2 was found for
which only one vortex shedding frequency could be found in the wake. The critical
Reynolds number Re2 at which the beatings were observed to set in was about 57.
The length of the affected zone was measured at Re = 150. At this Reynolds number,
it was found to extend about 10 cylinder diameters from the free ends or from large
end plates. The ratio of the frequency of basic oscillations and of the beatings, which
is indicative of the frequency difference between the central and the end zone, was
found to decrease continuously from about 11 at Re = 57 to 6 at Re = 154. For
small aspect ratios, i.e. for cylinders having a spanwise length smaller than the overall
length of both affected zones the beatings were observed to disappear, but the vortex
shedding frequency lay between that of the affected and central zones and was thus
lower than the two-dimensional one.

Altering the end zones of the cylinder appeared to be an efficient means of vortex
shedding control. Reduction of the cylinder diameter at the ends leads to a lower
vortex shedding frequency. Conversely, the frequency can be increased by increasing
the local diameter near the ends. In this way the end effects can be compensated.
A single frequency corresponding exactly to the two-dimensional value could be
obtained by placing two coaxial hollow cylinders of about twice the diameter of
the principal one along its ends (Eisenlohr & Eckelmann 1989). The analysis of
three-dimensional effects could be used to explain definitively (König et al. 1990) the
discontinuity in the Strouhal vs. Reynolds curve observed by Tritton (1959). It was
recognized that the geometry of the cylinder ends, the aspect ratio and the distance
from the ends govern the character of the recorded velocity signal.

Later papers (König, Noack & Eckelmann 1993; Brede et al. 1994) stress the
discrete nature of the vortex shedding frequencies found in the cylinder wake. The
frequencies appear to vary with a well-defined step from one ‘shedding cell’ to another
and are reminiscent of quantum mechanical energy spectra. A still finer frequency
spectrum is found in a slender cone wake, showing clearly that the spatial frequency
variation of Gaster (1969) is, actually, also discrete (König 1993).

The cited experimental results prove that the three-dimensional geometry of the
wake of finite objects leads to special effects that give rise to some of basic questions.
The most important problem is related to the presence of frequencies varying in
space in a low Reynolds number flow in which strong ‘lock in’ effects are known to
predominate. Whether the vortex shedding frequency varies continuously along the
span of the obstacle as claimed by Gaster (1969) or stepwise as in Gaster (1971) and
Gerich & Eckelmann (1982) and later papers cited above, the interpretation in terms of
‘local’ Reynolds numbers or separated zones is in contradiction to the global character
of the wake confirmed by the frequencies of the modulation which are uniform
in space. It should be made clear whether separate zones with incommensurate
frequencies can exist in a laminar wake and their origin should be explained.

1.4. Progress in understanding of the primary instability mechanisms

For low Reynolds number flows instability theory accounts well for all observed
phenomena. The vortex shedding in the wake of an infinite cylinder has been many
times, and with an increasing degree of sophistication, investigated theoretically in
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terms of linear instability theory with the objective to describe its onset and predict its
frequency (see e.g. Mattingly & Criminale 1972 as an example of early work based on
the parallel flow instability theory, the fully two-dimensional linear theory of Jackson
1987 or the review of Huerre & Monkewitz 1990 for other references). The effort
to derive a theoretical framework explaining the three-dimensional phenomena in
low Reynolds number wakes (near the primary instability threshold) has so far been
limited to semi-phenomenological models focusing only to some partial aspects of the
problem (Gaster 1969; Leweke & Provansal 1995; Albarède & Provansal 1995).

In a recent paper (Dušek et al. 1994b) a fully nonlinear approach based on basic
concepts of the theory of dissipative dynamical systems was applied to give an exact
theory of the two-dimensional wake based solely on the Navier–Stokes equations.
In this framework, it can be said that the flow field described mathematically as
a steady solution of the Navier–Stokes equations undergoes a Hopf bifurcation at
Re1 ≈ 46. Above this critical Reynolds number value the steady flow solution becomes
unstable (see also the experimental study of Strykowski & Sreenivasan 1990). An
infinitesimal perturbation deviates the flow from its steady state and oscillations
characterizing the onset of instability appear. Linear instability theory predicts the
amplification rate and the frequency of oscillations to be uniform in space. This
result is a trivial consequence of the fact that the amplification rate and the linear
vortex shedding frequency are, respectively, the real and the imaginary part of the
unstable eigenvalue of the linear eigenvalue problem. The amplification was shown
(Sreenivasan, Strykowski & Olinger 1987, Mathis, Provansal & Boyer 1987) to follow
qualitatively the Landau model (Landau & Lifshitz 1959) to reach a state, called
saturation, at which the amplitudes of oscillations become steady. This asymptotic
state of the flow has been identified (Dušek et al. 1994b), by analysing numerical
simulations, as a limit cycle in the functional sense. It means that all the flow
characteristics, such as velocities and pressure, oscillate with a period that is uniform
in space. This limit cycle, as well as any limit cycle known in finite-dimensional
systems, can be represented in terms of a Fourier decomposition into harmonics, the
latter being in this case complex functions in space. The harmonics, describing the
envelopes and phases of oscillations throughout the space, have been shown to be
non-zero in the whole space (Dušek et al. 1994b) (except sets of zero measure), i.e.
in particular upstream of the obstacle as well as downstream, and to have a space
structure giving rise to the typical plane wave vortex shedding in the far wake and
reflecting the symmetry of the geometrical configuration (Dušek 1996). The nonlinear
mechanisms of the transfer of energy from the mean flow to the fundamental, back
to the mean flow and up to higher harmonics could be analysed (Carte et al. 1996)
by means of a specially designed numerical method (Carte, Dušek & Fraunie 1995).
This analysis demonstrated the relevance and practical importance of the dynamical
system viewpoint.

1.5. Objectives of the present study

The purpose of the present paper is to extend the so far two-dimensional analysis
of an infinite cylinder wake to wakes with three-dimensional effects. The method of
investigation is based on a direct numerical solution of the Navier–Stokes equations
and its subsequent theoretical analysis. In view of existing experimental data and
for numerical convenience, cylinders with free ends and moderate but not too small
aspect ratios have been chosen. The geometrical configurations, the numerical method
and numerical trade-offs of the simulations are presented in §2. The wake of the
investigated objects is shown to undergo a primary and a secondary bifurcation
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at fairly low Reynolds numbers, both bifurcations being of Hopf type. In §3 the
primary instability is investigated fully in three dimensions as a limit cycle of the
three-dimensional flow field. In §§4 and 5 the onset of the secondary instability is
described in terms of an instability of the limit cycle and a transition to a limit
T 2-torus and a conceptually simple but exact theoretical framework is given. In
§6 some basic characteristics of the limit torus introduced in §5 are presented. The
influence of aspect ratio of the cylinder on the described behaviour is analyzed in §7.
The theoretical implications and perspectives are discussed in §8.

2. Numerical method
2.1. Simulated configurations

The numerical simulations have been carried out using the Nekton† three-dimensional
spectral element (Patera 1984) Navier–Stokes solver. The spectral element method
seemed most appropriate because of its capability to treat complex geometries and its
lack of numerical diffusion. Four geometrical configurations have been considered:

(i) a full circular cylinder of aspect ratio 21.4 (figure 1a),
(ii) a half-cylinder mimicking the full configuration of the same aspect ratio using

a numerical symmetry condition with respect to the symmetry plane normal to the
cylinder axis (figure 1a),

(iii) a full cylinder of aspect ratio 10.7 and
(iv) a half-NACA 0012 wing of aspect ratio 12 with a 34◦ incidence.
The results concerning the NACA wing will, however, be only briefly mentioned

in this paper (for more details see Dauchy 1995), only to show that wakes of more
general, non-symmetrical, objects present the same behaviour as the wake of a circular
cylinder. The diameter of the cylinder and the chord and incidence of the NACA
wing were chosen so that their effective cross-sections were the same. Common length
units were chosen for the cylinder and the NACA wing so that the chord length of
the NACA profile was c = 1 and the cylinder diameter d = 0.56.

Because of the necessity to capture more complex dynamics than that of the periodic
primary instability of the cylinder wake relatively long runs were required. The length
of the runs added to the increased complexity related to the three-dimensional
configuration. Special attention had thus to be paid to keeping the computing costs
within reasonable limits. The full configuration was used only for testing the physical
relevance of the results obtained in the half-domain with a symmetry plane.

2.2. Spectral element mesh

The mesh used for the half-cylinder simulating the L/d=21.4 geometry is represented
in figure 1(b). In the streamwise direction, it extends from about 4 cylinder diameters
upstream to 13.8 diameters downstream of the cylinder axis. (The overall length of
the domain is 10 units, i.e. about 18 cylinder diameters.) In the transverse direction,
the lateral boundaries are placed at 3.6 diameters from the cylinder axis. In the
spanwise direction, the symmetry plane coincides with the z = 0 plane. The spanwise
width of the domain is 14.3 cylinder diameters, the cylinder half-length being 10.7
diameters. As a result, about 3.6 diameters are left between the cylinder tip and
the domain boundary. The ‘infinity’ of the domain is simulated by a uniform free-
stream velocity (U = 1, V = 0,W = 0) condition in the planes limiting the domain

† Copyright c© 1991 by creare.x, Inc., Hanover, New Hampshire, USA, Nekton is a registered
trademark of Nektonics, Inc. and the Massachusetts Institute of Technology.
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Figure 1. (a) The configuration of the full and of the half-cylinder of diameter d = 0.56 and full
length L = 12 or L = 6 (aspect ratio 21.4 and 10.7, respectively). The orientation of axes is also
represented: x-axis parallel to the inflow velocity U , z-axis oriented along the cylinder axes and
y-axis normal to the plane (U , Oz). The origin is placed at the centre of the intersection of the
cylinder with the symmetry plane xOy. (b) Macroelement mesh for the half-cylinder. The length
unit is chosen so that the cylinder diameter is d = 0.56 and its half-length L/2 = 6.

in the transverse and in the spanwise direction. At the inflow, the same uniform
free-stream velocity condition is imposed. The outflow conditions used are those
supplied with the code†. They consist of setting the stresses at the outflow equal
to zero. It has been verified that not only is the volume well conserved but the
vortex structures appear to leave the domain fairly freely and without appreciable
reflections. In figure 1 only macro-elements are represented. They are distributed in
three layers of thickness equal to 8.9, 1.8 and 3.6 diameters and their total number is
99 for this configuration. Each element contains six collocation points of the pseudo-
spectral interpolation polynomials (Patera 1984) in each space direction, i.e. 216
altogether. Taking into account the boundary conditions and continuity conditions
at element interfaces the total number of effective degrees of freedom of the mesh
is thus roughly 10 000 per discretized variable (velocity component, pressure). The

† Nekton, User’s Guide.
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time discretization was based on the semi-implicit first-order time-splitting method
of Korczak & Patera 1986 (described also in Karniadakis & Triantafyllou 1989).
The numerical stability requirements and the existence of very small elements near
the cylinder tip limited the time step to a value corresponding roughly to 1800 time
steps per Strouhal period. The CPU time of simulation of one Strouhal period is a
good indicator of the computing costs of simulation of the wake dynamics, typically
one to two hundred Strouhal periods being necessary to settle to the investigated
attractor and to determine its characteristics. For the half-cylinder configuration
with 99 spectral elements the CPU time was about 2.2 h per Strouhal period on a
machine with an estimated real performance of about 40 Mflops (DEC Alpha 2100
4/250), double the time was needed for the complete 198 configuration. Typically
two or more weeks were needed to investigate the dynamics at one Reynolds number
value.

2.3. Numerical trade-offs

To reach perfect quantitative agreement with a real configuration would have re-
quired significantly higher computing costs. In two dimensions, a mesh that allows
a really good numerical convergence of the spatial discretization and a better than
1% agreement with experimental values of the principal characteristics of the cylin-
der wake to be reached is given in Dušek et al. (1994b). The two-dimensional
projection of the mesh used here corresponds roughly to the central zone of the
mesh in figure 1 of Dušek et al. (1994b), except that the number of collocation
points per element and per space direction is only 6 instead of 14. In spite of
the drastic reduction of the number of collocation points per space direction and
of the mesh extension, the three-dimensional mesh of the half-domain has almost
twice as many effective degrees of freedom as the very accurate two-dimensional
mesh of Dušek et al. (1994b). Owing to the small elements near the cylinder end
mentioned above the time step of the present three-dimensional simulation was only
slightly longer than in the two-dimensional case (1800 time steps instead of 2500
per Strouhal period). After the limit cycle was reached, the whole two-dimensional
wake dynamics could be captured, in principle, within one period of simulation
(the computation of the transients due to the instability amplification was done
with a lower resolution) whereas the investigation of the more complex dynamics
of the three-dimensional wake necessitated, typically, a simulation of one to two
hundred of Strouhal periods. As a result, in spite of the substantial trade-offs in
the space discretization accuracy of the three-dimensional mesh, the present study
was, computationally, considerably more expensive than in the two-dimensional case.
The mesh represented in figure 1, nevertheless, brought the computing costs within
reasonable limits and enabled the simulations to be carried out on current worksta-
tions.

The effects of the numerical trade-offs could be roughly estimated and assurance of
the qualitative relevance of the results could be obtained. A detailed analysis of the
relation between the numerical errors of the spectral element method and the most
important characteristics of the Bénard–von Kármán instability (Dušek & Fraunié
1993) has shown that a qualitatively correct picture of the unstable two-dimensional
wake could be captured with quite a low resolution and on a limited two-dimensional
domain of the type obtained as a two-dimensional projection of the present three-
dimensional mesh. Actually, a simulation with only 20 spectral elements having as few
as 6 collocation points in each space direction has been shown to yield a qualitatively
correct wake.
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The following discretization parameters have been tested in two dimensions: the
distribution of elements, the number of collocation points per element and space
direction, the positions of the inflow, lateral and outflow boundaries as well as
several types of inflow and lateral boundary conditions. It has been found that the
types of classically used inflow conditions tested (uniform or potential flow free-
stream velocity) lead to an increase of the amplification rate (decrease of the critical
Reynolds number) and Strouhal frequency which was practically independent of the
type of condition used. The only way to eliminate this influence was to shift the inflow
boundaries far enough upstream of the cylinder. The lateral free-stream condition
results in a similar enhancement of the instability easily explainable by the amplifying
effect due to an increased shear.

For the present mesh, the relatively small domain extension was estimated to be
responsible for a less than 5% downward shift of the critical Reynolds number and
for a 10% upward shift of the Strouhal frequency. The outflow boundary condition
was found to cause an opposite trend, but for domains extending at least about 10
diameters downstream of the cylinder this effect appeared to be negligible (practically
no reduction of the Strouhal number and a less than 1% increase of the critical
Reynolds number). No spurious secondary frequencies resulting from boundary
conditions such as those appearing in some compressible simulations (Abarbanel et
al. 1991) were detected.

The increase of the number of collocation points results, in general, in a dampening
of the instability. This can be explained by the numerical gradients of the flow field
due to discontinuities at element interfaces. The discontinuities are the stronger
the smaller the number of collocation points. The numerical gradients, then, tend
to increase the shear effects in the near wake and destabilize the flow. This trend
need not be completely monotonic but it has always been found to dominate. The
fact that only 6 collocation points per element and space direction have been used
was estimated to increase the Strouhal frequency by another 10% and decrease the
critical Reynolds number by another 5% for the circular cylinder. A similar trend was
found in the NACA wing configuration with a slightly non-monotonic convergence
depending on the number of collocation points. The simulation of the onset of
the Bénard–von Kármán instability in the two-dimensional domain obtained as a
projection of the presented three-dimensional configuration could be compared to
accurate results of Dušek et al. (1994b). A critical Reynolds number of about 43 and
a critical Strouhal number of 0.14 have been found, the exact values being about 46
and 0.12, respectively. A similar overestimation of the Strouhal number appears in
the two-dimensional simulations of Karniadakis & Triantafyllou 1989 (see also the
comparison to experimental results in Williamson 1989) where an analogous mesh
with a higher number of collocation points but with a less-optimized spectral element
distribution was used.

It is more difficult to estimate the accuracy of the computation as far as purely three-
dimensional effects are concerned. The latter have been found to be characterized
by a low-frequency modulation of the wake oscillations. As a result the critical
Reynolds number and the frequency of the modulation have to be computed for
various meshes for this purpose. It is clear that the boundary plane situated as
close as less than 4 cylinder diameters from the cylinder tip in the spanwise direction
cuts off the secondary instability and is expected to have a dampening effect on
the instability. There is, however, no blockage effect because a free-stream velocity
condition is used and the dampening is not very strong. The influence of the
spanwise confinement was tested on a mesh having an additional spectral element
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layer between 8 < z < 10, i.e. extended in such a way that the distance between the
cylinder tip and the spanwise boundary was increased to 7.1 diameters. The total
number of spectral elements of this mesh was 142. In agreement with expectations,
the primary oscillations, which are, basically, a two-dimensional effect, remained
practically unaffected by this domain extension. In contrast, the beatings were
stronger and had a higher frequency in the extended domain, the difference being,
however, relatively moderate: about a 5% increase of the amplitude and about a
10% increase of the frequency.

The influence of the number of collocation points per element and space direction
was tested by increasing their number from 6 to 8. Such a seemingly small increase
of the discretization accuracy multiplies the computing costs by about a factor of 4.
In agreement with expectations, the beatings have been found to have a significantly
smaller amplitude which means that the critical Reynolds number of their onset
(see §4) had been shifted upward. The level of the primary oscillations remained
approximately the same and the basic (Strouhal) frequency even increased by about
3% which contradicted the trends obtained on two-dimensional meshes. Similarly,
the frequency of the beatings increased. Undoubtedly the three-dimensional effects
play a perceptible role in the capturing of the primary instability characteristics
and a more systematic investigation of the three-dimensional discretization would be
necessary to reveal the correct trends and their causes. Fortunately, the effects of
these not fully understood trends are negligible with respect to dominating numerical
errors.

The accuracy of the Navier–Stokes solution may also be influenced by the con-
vergence of the pressure solver. To avoid this problem we adopted the strategy of
setting the tolerance of the internal Poisson and Helmholtz inversion to a rather low
level. It appears that the computing costs are not significantly increased and the zero
divergence of the flow field is guaranteed. For the simulations performed, the average
level of divergence varied between 10−4 and 2 × 10−4. It must not be forgotten that
the spectral element space discretization yields discontinuities of the derivatives at
the element interfaces (Patera 1984) so that local values of divergence at element
interfaces may be much higher than the average but the instability characteristics are
determined by the average values.

A more detailed numerical investigation giving accurate bounds of the numerical
errors of various relevant physical characteristics investigated by the simulation is
possible but appeared to be prohibitively time consuming. Except for the small
details mentioned above, the effects of the discretization inaccuracy could be roughly
estimated and the errors brought under control. As a result, we do not expect that
more accurate (and significantly more expensive) simulations would yield qualitatively
different and quantitatively unexpected results. The chosen mesh represents a rea-
sonable compromise allowing realistic simulations at acceptable costs with standard
numerical techniques and computing equipment.

2.4. ‘History’ point distribution

On-line monitoring of the simulation and rapid comparison to experimental hot-wire
results was made possible by registering the velocity at 16 ‘history’ points distributed
throughout the computational domain. Their coordinates are assembled in table 1
and the numbering will be, from time to time, referred to in the text. 31 history points
distributed symmetrically with respect to the symmetry plane z = 0 were used in
the full cylinder configuration. In the NACA wing mesh similarly distributed history
points were also used.
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Point x y z Point x y z

1 1.591 −0.4688 3.213 9 3.515 −0.2859 0
2 1.591 −0.4688 5.883 10 7.280 −0.2859 5.643
3 1.591 0 3.213 11 7.280 0 5.643
4 1.591 0 5.883 12 7.280 −0.8000 5.643
5 3.515 −0.2859 3.213 13 7.280 0.0939 3.213
6 3.515 −0.2859 5.883 14 7.280 0 3.213
7 3.515 0 5.883 15 7.280 −0.2859 3.213
8 3.515 0 3.213 16 7.280 −0.5141 3.213

Table 1. Coordinates of ‘history’ points of the simulation of flow past the half-cylinder of aspect
ratio L/d = 21.4 in units such that d = 0.56

3. Primary (Bénard–von Kármán) instability in three dimensions
The primary instability in the wake of finite cylinders is a phenomenon that has

been described many times experimentally and numerically. It is well known that, in
the central symmetry plane, the instability is, except for small effects due to the finite
aspect ratio investigated by Mathis (1983) and more recently by Albarède & Provansal
(1995), practically identical with that obtained in a perfectly two-dimensional case.
The spatial envelopes along the flow axis have been measured experimentally by
Mathis (1983). Recently Goujon-Durand, Jenffer & Wesfreid 1994 examined the
deformation of these envelopes with increasing Reynolds number. The full spatial de-
scription of the instability limit cycle has been obtained from a numerical simulation
in Dušek (1996). Present experimental techniques make it possible to also measure
the envelopes of the lowest instability harmonics fully in two dimensions using laser
Doppler anemometry (Wesfreid, Goujon-Durand & Zielinska 1996) or Ultrasound
Velocimetry (Peschard 1995). As far as the strongly three-dimensional aspects of the
primary instability near the ends of the finite cylinders are concerned, the paper of
Gerich & Eckelmann 1982 mentions the existence of a narrow interval of Reynolds
numbers where only one frequency can be found in the flow. The amplitudes of
oscillations with this frequency have been found to vanish close to the cylinder ends.
As will be shown in this study, this interval is the shorter the greater the aspect ratio
so that for large aspect ratios such as those referred to in König et al. (1990, 1992,
1993) or Brede et al. (1994), it may be difficult to detect.

3.1. Limit cycle characterization

Before presenting the three-dimensional structure of the primary instability let us dis-
cuss its character. In Dušek et al. (1994b), it has been shown that the two-dimensional
Bénard–von Kármán instability reaches a strict limit cycle. It is easy to carry out
two-dimensional simulations at unphysically high Reynolds numbers (> 200) to show
that this limit cycle remains stable as long as the transition to three-dimensionality
is inhibited. The observed presence of two or several incommensurate frequencies in
three-dimensional wakes at very low Reynolds numbers proves that the limit cycle of
the primary instability is often not very stable and the question may arise whether a,
strictly speaking, stable limit cycle exists at all in three dimensions. Recall that Ben-
jamin & Feir (1967) showed that waves on deep water, which can be considered as a
primary instability at the water surface, are always unstable, i.e. can never reach a per-
fect limit cycle. A simple way to check the existence of the limit cycle is to investigate
the period of the simulated velocity signal in various zones of the flow over a long time.



Instabilities in the wake of a cylinder with free ends 307

As has already been mentioned in the previous section, the instability develops
spontaneously at Reynolds numbers exceeding Re1 = 43 with our space and time
discretization accuracy. At slightly supercritical Reynolds numbers Re = 45, 47 and
49, we let the instability reach saturation and measured the simulated frequency of the
oscillations at all 16 history points. Note that only one point had been placed in the
symmetry plane where the behaviour was expected to be very nearly two-dimensional
and that, on the contrary, most of the history points had been distributed at various
distances downstream of the zone close to the cylinder tip where a more complex
behaviour was always experimentally observed. At all points and for all velocity
components, we also plotted the three values of the square of the amplitude so
obtained and found a very nearly linear trend, from which we estimated the critical
Reynolds number value given above.

Analogous simulations have been carried out for the NACA wing at Reynolds
number values based on the inflow velocity and the wing chord of Re = 76, 77 and
80. The critical Reynolds number, based on the profile chord c, was found to be
Re1 = 74. If, instead, a Reynolds number Re′ based on the effective cross-section
width c sin(α), with α the incidence angle, is used this critical value corresponds to
Re′ = 41, which is practically the same as for the circular profile.

At each point, the period T was determined on the basis of the simulated ve-
locity signal for all the three velocity components by taking twice the mean time
corresponding to crossing the mean value and an average was taken over the three
components. The Strouhal number values so computed at all history points have been
found uniform with an accuracy of about 1 to 2 per thousand. The Strouhal number
varies only very slowly as a function of the Reynolds number. By extrapolating the
slightly supercritical Strouhal number values to the critical Reynolds number we find
a critical Strouhal number of St1 ≈ 0.143. All these simple results can be summed
up as a confirmation of the well-known fact that the primary instability arises as a
result of a supercritical Hopf bifurcation. Close to the critical Reynolds number for
the onset of oscillations the flow reaches a stable limit cycle with an oscillation period
which is uniform in space.

The limit cycle can be best characterized by its harmonics. In Dušek et al. (1994b)
a temporal Fourier decomposition of the Navier–Stokes equations was proposed. It
is based on a separation of the periodic behaviour, expanded in a Fourier series, and
of the non-periodic transients, accommodated by time-dependent Fourier coefficients.
The method appeared to be not only of theoretical interest but also provided a basis
for an efficient numerical algorithm applicable to the investigation of instabilities
(Carte et al. 1995). The pressure–velocity formulation of the Fourier decomposition
of the Navier–Stokes equations is also described in Carte et al. (1995).

At saturation (i.e. when the limit cycle is reached) the velocity and pressure fields
become strictly periodic and the expansions described in Carte et al. (1995) become
genuine Fourier expansions with time-independent coefficients:

v(t, .) =

+∞∑
n=−∞

c(1)
n (.) einω(1)t (1)

and

p(t, .) =

+∞∑
n=−∞

d(1)
n (.) einω(1)t. (2)

The superscript (1) in (1) and (2) refers to the limit cycle of the primary instability.
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The Fourier coefficients c(1)
n and d(1)

n are, respectively, vectorial and scalar complex
functions in space; the angular frequency ω(1) is that of the saturated instability. The
velocity and pressure being real, we have

c(1)
n = c(1)

−n, d
(1)
n = d(1)

−n. (3)

The Fourier coefficients c(1)
n and d(1)

n satisfy the following system of coupled equations:(
inω1 −

1

Re
∇2

)
c(1)
n +

+∞∑
k=−∞

(
c(1)
k · ∇

)
· c(1)

n−k + ∇d(1)
n = 0, (4)

∇ · c(1)
n = 0. (5)

yielding a time-independent limit cycle description.
The advantage of the characterization of the limit cycle by its Fourier coefficients is

that it reduces the cycle to a fixed point in a more complex space. This space is actually
not much more complex that the original unsteady velocity–pressure representation
because only a limited number of harmonics characterize accurately the flow near
the primary instability threshold (see Carte et al. 1995, 1996 and Dušek 1996). To
obtain a quite accurate description of the limit cycle of the instability a small number
of complex steady space functions replace the four unsteady real functions which are
the velocity vector and the pressure.

3.2. Computation of Fourier components

In this paper, we do not investigate the transient process of convergence to the limit
cycle: we focus directly on the flow after the limit cycle has been reached. The
expansion (1) of the velocity field is computed from a direct solution of unsteady
Navier–Stokes equations. The harmonics of the flow field have been computed
throughout the whole domain by integrating the Fourier coefficients over one period
of the flow oscillation. It has been done by the on-line post-processing described
in Dušek (1996) to avoid storing the intermediate instantaneous flow fields. The
on-line integration over one period allows any number of harmonics to be computed
and limits the additional storage capacity required only to the complex fields of the
considered Fourier components. Its advantage in comparison to fitting the Fourier
expansion to a limited number of selected flow field dumps is that it averages over
all intermediate values and reduces numerical errors. The integration period was
determined automatically at point 9 of table 1. For the cylinder, this point lies in the
symmetry plane close to the flow axis (y = 0, z = 0). On the flow axis the oscillations
of the v-velocity are maximal and the mean value is identically zero because of the
symmetry of the configuration. The selected point lying slightly off the symmetry
plane y = 0, the mean value of the v-velocity is not exactly zero there. The period
was thus obtained simply by registering every second zero crossing of the transverse
(v-) velocity signal at this point. The computing costs of the integration are negligible
if only a small number of harmonics are taken into account. We limited ourselves to
computing only the mean value, the first and the second harmonics. It appeared that
practically all information about the flow field was represented by these three lowest
Fourier components at the low Reynolds numbers considered, the higher harmonics
representing a correction of the order of 1%.

We present the results only for the cylinder wake at Re = 49 obtained in the half-
configuration. The primary instability breaks the symmetry with respect to the plane
defined by the cylinder axis and the inflow velocity direction but it is not expected to
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Figure 2. Iso-velocity plot of the u-velocity mean value downstream of the cylinder in the symmetry
plane z = 0 (a) and in the y = 0 plane containing the cylinder axis (b). The cylinder extends to
z = 6. Note the strong velocity deficit near the cylinder end. (Re = 49, L/d = 21.4.)

break the symmetry with respect to the symmetry plane normal to the cylinder. Indeed,
a simulation with a slightly asymmetrical initial condition in the full configuration at
Re = 49 confirmed this expectation. As a result, the simulations in the half-domain
can be considered as an exact representation of the full domain flow. Symmetry
breaking does not mean that the symmetry gets totally lost (Crawford & Knobloch
1991). Although the instantaneous flow has no longer the symmetry properties of the
steady flow, the mean flow and the harmonics do still keep well-defined symmetry
properties (Dušek 1996). The flow past the asymmetrically positioned wing is very
similar except that symmetry properties hold only asymptotically.

3.3. Mean value

Figure 2 shows the mean value c(1)
u,0 of the streamwise (u-) velocity downstream of

the cylinder in the z = 0 symmetry plane and in the plane containing the cylinder
axis (y = 0). Figure 2(a) (z = 0-plane) is indistinguishable from that obtained in a
two-dimensional simulation. The three-dimensional effects are visible in figure 2(b).
Recall that the length units are such that the cylinder diameter is 0.56 and it extends
from z = 0 (the symmetry plane) to z = 6. Note that there is actually a minimum of
the velocity deficit on the flow axis (y = 0, z = 0), the maximum lying between z = 4
and z = 5, i.e. only about 3 cylinder diameters from the cylinder end. The origin
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Figure 3. Iso-velocity plot of the spanwise (w)-velocity mean value (a) and (u, w) velocity vector
plot (b) downstream of the cylinder in the plane containing the cylinder axis (y = 0) showing the
strong recirculation past the cylinder end. (Re = 49, L/d = 21.4.)

of this maximum of the velocity deficit can easily be explained by the recirculation
around the cylinder end. Indeed, the strong vortex of the mean velocity field (c(1)

0 )
downstream of the cylinder end is clearly visible in figure 3.

3.4. Fundamental harmonic

Regarding the fundamental harmonic c(1)
1 of the instability, figure 4 represents the

known (Goujon-Durand et al. 1994; Wesfreid et al. 1996; Dušek 1996) typical
two-dimensional structure of the fundamental of the transverse velocity c

(1)
v,1. The

wavy character of the crest of the envelope of the fundamental represented in the
figure 4(a) is due to the presence of the spectral element interfaces and to the
insufficient spatial resolution. 12% above the instability threshold the experimental
data and numerical two-dimensional simulations lead to the maximum of the mode
being expected at about 7 diameters (at x ≈ 4) downstream of the cylinder. The
iso-phase plot (figure 4b) is obtained by plotting iso-lines of cos(ϕ), ϕ being the
phase of the complex function c

(1)
v,1 at levels ±

√
2/2, representing phases ±π/4 and

±π/4+π. A double line (obtained by plotting two levels of cosine very close to
√

2/2)
is used to distinguish the values ±π/4 from ±π/4 + π. The phase plot shows the
transverse deformation of the propagating wave of the fundamental and allows the
wavelength near the outflow of the domain to be estimated as 6.1 cylinder diameters
which agrees again with two-dimensional simulations and experimental results of
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Figure 4. Representation of the fundamental of the v-velocity in the symmetry plane z = 0: (a)
iso-amplitude plot, (b) iso-phase plot. The iso-phase plot is obtained by plotting cos(ϕ), ϕ being
the phase. The double line represents the ϕ = ±π/4, the single one ϕ = ±π/4 + π. (Re = 49,
L/d = 21.4).

Williamson for the same value of the instability parameter (Re − Re1)/Re1. It is
interesting to see how the fundamental changes in the spanwise direction. If the
transverse structure is plotted in various z = const. sections it can be seen that the
form of the envelope as well as the phase plots are almost the same except that
the amplitude decreases as the cylinder ends are approached. Figure 5 shows the
envelope of the fundamental in the plane containing the cylinder end. The envelope is
only a little more elongated, but the maximum lies always approximately 7 diameters
downstream of the cylinder. The amplitude is about 35 times smaller than in the
symmetry plane z = 0. Off the symmetry plane, the spanwise (w-) velocity component
is non-zero. The symmetry properties with respect to the y = 0 plane of the w-velocity
component are the same as those of the streamwise (u-) velocity (see Dušek et al.
1994b). As a result, the fundamental c(1)

w,1 is antisymmetric with respect to the y = 0
plane, i.e. its envelope has two lobes, each corresponding to opposite phases of
oscillations.

To show the spanwise structure of the fundamental we visualized its envelope and
phase in the plane y = 0 containing the cylinder axis. In figure 6(a), the envelope of
the v-velocity is plotted in the form of iso-lines of its logarithm log10(|c

(1)
v,1|) to make

its progressive decrease past the cylinder end more visible. The iso-phase plot of c(1)
v,1

in figure 6(b) is representative of the spanwise form of the vortices in the wake. The
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Figure 5. Iso-amplitude plot of the fundamental of the v-velocity in the plane containing the
cylinder end z = 6. (Re = 49, L/d = 21.4.)

similarity with the ‘low speed mode’ visualization of Tritton (1959) is obvious. The
structure of envelopes of the individual components of the fundamental harmonic is
determined by their symmetry properties. The v-velocity fundamental is symmetric
with respect to both the y = 0 and the z = 0 planes so that its envelope has only
one lobe as seen in figures 4 and 6. The u-velocity fundamental is symmetric with
respect to the z = 0 plane but antisymmetric with respect to the y = 0 plane so
two lobes of the envelope exist and are separated by the y = 0 plane as can be seen
in two-dimensional visualizations (Dušek 1996). The w-velocity fundamental c(1)

w,1 is
antisymmetric with respect to both the y = 0 and z = 0 planes, which implies that it
is identically zero in these planes and its envelope has four lobes.

3.5. Higher harmonics

In Dušek et al. (1994b) the symmetry properties of all the harmonics of the two-
dimensional cylinder wake have been specified by giving the symmetry properties of
the stream-function Fourier components. The Fourier components of the velocity
vector field are discussed in two dimensions in Dušek (1996). In three dimensions,
the geometry possesses two symmetry planes y = 0 and z = 0 for the finite circular
cylinder. The broken symmetry with respect to the y = 0 plane yields the more
complex symmetry properties for the u- and v-velocity harmonics and for the scalar
functions presented already in the two-dimensional case. The symmetry of the w-
velocity harmonics with respect to this symmetry plane is the same as for the u-velocity.
The symmetry properties with respect to the y = 0 plane can be summarized up as
follows:

dn(x,−y, z) = (−1)ndn(x, y, z),

cu,n(x,−y, z) = (−1)ncu,n(x, y, z),

cv,n(x,−y, z) = (−1)n+1cv,n(x, y, z),

cw,n(x,−y, z) = (−1)ncw,n(x, y, z).

 (6)

In (6) we dropped the superscript (1) because they hold also for the transients if they
are satisfied by the initial condition. In contrast, the symmetry with respect to the
z = 0 plane is not broken and the ordinary scalar and vector symmetry representation
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Figure 6. Cross-section of the v-velocity fundamental in the plane containing the cylinder axis
y = 0. (a) Iso-lines of the common logarithm of the envelope. (b) Iso-phase plot (see caption of
figure 4). (Re = 49, L/d = 21.4.)

holds for all harmonics:

dn(x, y,−z) = dn(x, y, z),

cu,n(x, y,−z) = cu,n(x, y, z),

cv,n(x, y,−z) = cv,n(x, y, z),

cw,n(x, y,−z) = −cw,n(x, y, z).

 (7)

As a consequence, the three-dimensional case does not add anything fundamentally
new in comparison with the two-dimensional one. The transverse structure of the
higher harmonics of the v- and u-velocity has been found qualitatively the same as in
two dimensions (see Dušek 1966), while for the w-velocity component, its symmetry
properties (6) suggest, and visualizations confirm, that the transverse structure of its
harmonics is much the same as for the u-velocity component. The spanwise structure
is simple for all harmonics and influenced by the symmetry properties (7), i.e. the u-
and v-velocity harmonics have their maxima in the z = 0 plane like the v-velocity
fundamental plotted in figure 6. The maximum of the w-velocity harmonics lies off
this plane because of the antisymmetry of the w-velocity with respect to the z = 0
plane.

The wake of an asymmetric object such as that of the NACA wing with incidence
considered keeps many of the properties resulting from the symmetry relations (6) in
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spite of the fact that there is no longer a strict symmetry with respect to the y = 0
plane. This can be explained by the fact that the asymmetry is really felt only in
the near wake but that, asymptotically, the shape of the object plays only a limited
role. Similarly, the symmetry of the far wake with respect to the z = 0 plane remains
even if the obstacle is slightly tilted. In the far wake the symmetry properties (6), (7)
are fully recovered even for non-symmetric obstacles. An asymmetric but elongated
object thus generates a wake still possessing two asymptotic symmetry planes.

4. Secondary instability
4.1. Onset of modulation of wake oscillations

When the Reynolds number is increased we observe the onset of modulation of the
wake oscillations similar to that reported in experiments (Tritton 1959; Gaster 1969,
1971; Gerich & Eckelmann 1982; König et al. 1990). At Re = 54 the modulation is
clearly present whereas a simulation starting with an initial condition corresponding
to the flow with modulation at Re = 54 but run at Re = 52 shows the modulation
amplitude vanishing exponentially (figure 7). Figure 7 shows signals of transverse (v-)
velocity at the same point (point 8) in the y = 0 plane about 6 diameters downstream
of the cylinder and about half-way between the symmetry plane (z = 0) and the
cylinder end, but the same behaviour can be observed everywhere, in particular also
in the symmetry plane (point 9). The modulation is thus clearly a global phenomenon
and its threshold of onset lies at Re2 ≈ 53 (for the numerical discretization used).
Gaster (1969) notes that the beatings in the wake of a slender cone are noteworthy for
their uniform frequency throughout the flow in spite of the fact that rapid oscillations
within the beatings are found to vary spanwise and to obey the Roshko law based
on the local Reynolds number of the cone. Gerich & Eckelmann (1982) find that the
frequency of modulation (beatings) corresponds exactly to the difference of the wake
frequencies found in the ‘affected’ and ‘unaffected’ regions of the wake and that in
both regions the basic frequency is uniform. This means that they, too, observe the
same frequency of modulation whether they measure the velocity fluctuations in the
central zone of the cylinder or near its tips. The first point is thus to see whether
the modulation in our simulation is, indeed, uniform throughout the flow in the same
way as it was the case for the frequency of the primary instability.

4.2. Hopf-like character of the secondary bifurcation

For this purpose the period of the modulation was calculated at all the 16 history
points of table 1 at Re = 54. The non-dimensionalized value of the modulation
frequency was found to be St(2) = 0.00876 ± 0.00001 at all history points. The
uniformity of the period of the modulation has thus been clearly confirmed. Similar
simulations with a sufficiently long run to reach a steady modulation amplitude were
carried out at Re = 58 and Re = 62. At Re = 100 the attractor was not perfectly
reached but the simulation at this Reynolds number gives a good indication of the
trend at higher Reynolds number values. In all cases the uniformity of the modulation
frequency in space has been confirmed. The dependence of the square of the local
beating amplitude on the three nearly critical Reynolds number values considered
(54, 58, and 62) at a point situated in the z = 0 plane and the respective Strouhal
vs. Reynolds number dependence are plotted in figure 8. The Strouhal number is
the simulated frequency of modulation non-dimensionalized by the inflow velocity of
1 and the cylinder diameter of 0.56. (The deviation from nonlinearity in figure 8 is
due to the fact that the Reynolds number interval [54,62] is not quite small. The
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at Re = 54 at the point x = 3.5, y = 0, z = 3.2. (b) Decay of the modulation observed at the same
point as above in a run at Re = 52. (L/d = 21.4.)

Roshko vs. Reynolds number dependence approaches linearity much better.) An
extrapolation of the graphs in figure 8 shows that the critical Reynolds number of the
onset of the beatings lies clearly above the threshold of the primary instability. We
find Re2 = 53.5 which is about 24% above Re1 = 43. The critical Strouhal number
is about 0.0086 with a very slow increasing trend dSt/dRe ≈ 2.6 × 10−4 leaving no
doubt that this value is non-zero. Three values in figure 8 may seem inadequate
to draw a curve through. It should, however, be pointed out that the three values
plotted are essentially accurate within the dynamical model represented by the chosen
space-time discretization. The ultimate confirmation of the fact that the threshold
lies between Re = 52 and Re = 54 and that the critical Strouhal number is non-zero
is given in figure 7. We can thus conclude that the secondary bifurcation is again of
Hopf type.
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4.3. Symmetry with respect to the z = 0 plane

Before analysing the new instability in more detail we have to answer the question
whether the half-domain with the symmetry boundary condition in the z = 0 plane
used to simulate the whole configuration is still adequate. For this purpose we ran
a simulation in the full domain on a mesh obtained by adding the mirror image of
the half-domain on the other side of the symmetry plane. The simulation was carried
out for both aspect ratios L/d = 21.4 and L/d = 10.7. The initial condition for
L/d = 21.4 was constructed from the final state of the simulation at Re = 54 in the
half-domain by taking the symmetric flow with respect to the z = 0 plane. The easiest
way how to recognize symmetry breaking is to monitor the spanwise w-velocity in
the symmetry plane. A slight perturbation of the symmetry appeared. The w-velocity
oscillations had, however, a very low level of 10−5 representing about 0.1% of the
overall maximum of their amplitude (about 0.02 at x/d = 7, y/d = ±1 and z = ±5)
and had a very slow, but existent, trend to decrease. The same result was found by
comparing the other velocity components (u and v) at points situated symmetrically
with respect to the symmetry plane. The asymmetry was found not to exceed 0.4%
of the velocity oscillation amplitude. For the smaller aspect ratio of L/d = 10.7,
symmetry conservation was also confirmed. For this configuration, the simulation
was performed at Re = 100 and started from a perfectly symmetric flow obtained
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at a lower Reynolds number (80). The start of the run was thus characterized by
a Reynolds number jump. This appeared to be sufficient to trigger spanwise (w-)
velocity oscillations in the z = 0 symmetry plane of about a 10−3 amplitude but these
oscillations finished by decaying after about 100 primary Strouhal periods to the 10−5

level. The initial symmetry perturbation for L/d = 21.4 and Re = 54 is thus explained
as a result of a not perfectly established flow taken as initial condition. The stability
of the symmetry appears to be very weak but to exist.

Though no symmetry breaking was found at the secondary instability onset for the
aspect ratios considered, symmetry breaking might be expected at higher Reynolds
number or smaller aspect ratio. Jayaweera & Mason (1965) report a flutter of falling
cylinders significant only for cylinders with an aspect ratio L/d below a certain value.
In the limit case of a very flat cylinder, antisymmetric von Kármán vortex shedding
in the z = 0 plane occurs. The phenomenon might be similar to that of interacting
wakes (see Le Gal et al. 1990) with symmetry for long cylinders and antisymmetry for
short ones. The secondary instability described in this paper might not be relevant
for this symmetry transition because it tends to disappear for small aspect ratios (see
§7). A systematic investigation of what happens for small aspect ratios is thus a very
interesting issue.

Finally we compared the velocities simulated in the full domain with those obtained
in the half-domain to test if taking the full domain had a significant influence on the
secondary instability development. We found that the difference was negligible and
that it decayed in the same way as the asymmetry described above. We conclude that,
at least for the relatively large aspect ratios considered, the symmetry with respect to
the z = 0 plane is conserved and that the half-domain simulation accounts perfectly
for the dynamics of the full length configuration.

5. Nature of the attractor
5.1. Uniform or spatially variable primary frequency

The signal of the transverse velocity at Re = 54 presented in figure 7(a) suggests
that an attractor is reached. The uniformity of the modulation period allows the
application of a global Fourier decomposition with this period. However, as pointed
out in the introduction, some experimental results tend to indicate that the originally
uniform primary frequency varies throughout the flow field. A way of calculation
of the primary frequency consists of computing the ‘instantaneous period’ of the
oscillations. The latter being no longer really periodic, this value is obtained as the
time between two crossings of a given value in the same (upward or downward)
direction. In figures 9, 10, 11 we present, respectively, the local v-velocity signal,
its spectrum and its ‘instantaneous Strouhal number’ (in quotation marks because
it is based on the ‘instantaneous period’ just defined) at Re = 62 at three points
distributed spanwise about 6 diameters downstream of the cylinder. One point lies in
the symmetry plane (part a, point 9 of table 1), the second lies halfway between the
symmetry plane and the cylinder end in the spanwise direction (part b, point 8) and
the third point lies downstream of the cylinder end (part c, point 7).

In figure 9 the modulation period is clearly the same at the three points and
equal to 53.9 time units. The time obtained by dividing the cylinder diameter d
by the inflow velocity is equal to 0.56 time units, i.e. the corresponding Strouhal
number of the beating is St(2) = 0.0104. In figure 10 we can detect the principal
frequencies responsible for the beatings. In figure 10(a), we identify a principal
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Figure 9. Simulated v-velocity signal at Re = 62 at (a) a point in the symmetry plane but slightly
off the y = 0 plane (x = 3.5, y = −0.3, z = 0), (b) a point halfway between the symmetry plane and
the cylinder end in the streamwise direction (x = 3.5, y = 0, z = 3.2) and (c) a point downstream of
the cylinder end (x = 3.5, y = 0, z = 5.9), both last points lying in the y = 0 plane. (L/d = 21.4.)
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Figure 10. Spectra – absolute values of the Fourier transforms of the signals in figure 9. The symbols
f1 and f2 stand for St(1) and St(2), respectively, and are used to mark the peaks corresponding to
linear combinations of these frequencies.
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Strouhal number Stsym = 0.1520 and two, about one order of magnitude smaller,
lateral peaks corresponding to Stsym ± St(2). (In order to obtain legible symbols f1

stands for Stsym and f2 for St(2) in the figure.) The corresponding point lying in
the symmetry plane, we denote temporarily the non-dimensionalized frequency of
the main peak Stsym. In figure 10(b), two frequencies of almost equal amplitude
dominate. The slightly higher peak corresponds to Stsym − St(2) the other is that of
Stsym. In figure 10(c) the situation is very similar to that of 10(a) except that the
highest peak corresponds to Stsym − St(2) and the lateral (and significantly smaller)
ones are Stsym − 2St(2) and Stsym. In figure 11 the ‘instantaneous Strouhal numbers’
of the primary oscillations are plotted twice per Strouhal period (open circles) and
joined by a continuous line. The time scale being the same as in figure 9 it can easily
be seen which values correspond to the maximum amplitudes of the beatings used to
evaluate the local Strouhal number in Gaster (1969). It is clear that the frequency
corresponding to the maximum amplitude varies strongly from one signal to another.
Moreover, in part (a) (point in the symmetry plane) the frequency maxima correspond
to the lowest amplitudes, whereas in part (b) (point half-way between the cylinder
end and the symmetry plane) and part (c) (point downstream of the cylinder end)
they correspond to the maximum amplitudes. This seemingly amazing behaviour can
easily be explained.

Let us consider oscillations described by the real part of the following complex
expression:

z(t) =
[
a1,0 + a1,1e

iΩt + a1,−1e
−iΩt
]

eiωt. (8)

In figure 12(a) we plot the curve described by the expression in the square brackets
for arbitrarily chosen values: a1,0 = eiπ/3, a1,1 = 0.2eiπ/6, a1,−1 = 0.1e−iπ/3, ω = 2π and
Ω = 0.2π. It is an ellipse circumscribed with a period 2π/Ω in the direction given by
the sign of |a1,1|2−|a1,−1|2. That is, assuming the first term is dominant, if the absolute
value of the second, counter-clockwise rotating term is greater than that of the third,
clockwise rotating one the rotation along the ellipse is positive (counter-clockwise)
and vice versa. (If the absolute values are equal the ellipse degenerates to a segment.)
In (8) the whole figure rotates with angular frequency ω. The instantaneous angular
frequency of z(t) is given by the derivative of the phase ϕ = arg(z(t)). It is now easily
seen that, if the rotation around the ellipse is positive, the instantaneous frequency
at the maximum of the instantaneous amplitude, when the modulus |z(t)| is maximal,
will be higher than ω and vice versa for a negative rotation. The difference will be
roughly proportional to Ω multiplied by the ratio of the ellipse dimension over the
modulus of the dominating term a1,0. More accurately, for a1,−1 = 0, we would have
dϕ/dt|max = Ω|a1,1|/|a1,0|. The frequency shift is thus roughly proportional to the
depth of the modulation. For the values presented above the instantaneous angular
frequency is plotted in the figure 12(b). In figure 12(c), the real part of (8) is given
to illustrate that, in our case, the maximum of the amplitude corresponds to the
maximum of the frequency.

Let us go back to the simulated signals, frequencies and spectra in figures 9, 10
and 11. In parts (b) and (c) (points 8 and 7) the maximum instantaneous frequency
corresponds roughly to the maximum of the amplitude because the dominant fre-
quency at these points is Stsym − St(2) whereas the secondary peak corresponding to
Stsym has a higher frequency. At point 9 (part a) the main peak is at Stsym, the second
highest peak is at Stsym − St(2), i.e. at a lower frequency. As the result, the maximum
instantaneous frequency in figure 11(a) corresponds to the minima of the amplitudes
in figure 9(a).
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Figure 11. Undimensionalized primary frequency of the signals in figure 9.

This simple analysis shows that the properties of the simulated signal are explainable
as a destabilization of the fundamental of the limit cycle found in the previous section
by a secondary modulation with angular frequency ω(2). Two uniform frequencies
and spatially variable coefficients in (8) account for spatially variable local oscillation
frequencies such as those described in Gaster (1969).
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a1,−1 = 0.1e−iπ/3 and Ω = 0.2π. (b) Instantaneous value of the angular velocity of the curve
represented in (a) rotating with an angular velocity of ω = 2π. (c) The corresponding real value.

5.2. Destabilization of the limit cycle

In fact the whole limit cycle becomes unstable. In (4) and (5) the limit cycle has
been reduced to a fixed point in the space of Fourier coefficients (1), and analogous
pressure Fourier coefficients. Let us denote this primary instability representation

R(1) ≡ {c(1)
n , d

(1)
n }∞n=−∞. (9)

In analogy with the primary instability where the transition from a fixed point to a
limit cycle could be described by the Fourier series of the velocity–pressure field v, p
we can express the transition to the new attractor as a transition from a fixed point
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defined by the primary Fourier representation R(1) to

R(1) =

+∞∑
m=−∞

r(2)
m eimω(2)t. (10)

The Fourier expansion (10) can be written for each Fourier component of the primary
instability separately:

c(1)
n =

+∞∑
m=−∞

c(2)
n,meimω(2)t. (11)

The Fourier components c(1)
n being complex, no additional symmetry of the type (3)

holds with respect to the m index. Combining the primary and secondary Fourier
expansions (1), (11) we arrive at the double Fourier expansion:

v(t, .) =

+∞∑
m=−∞

+∞∑
n=−∞

c(2)
n,m(.)einω(1)teimω(2)t (12)

and a similar Fourier expansion for the pressure:

p(t, .) =

+∞∑
m=−∞

+∞∑
n=−∞

d(2)
n,m(.)einω(1)teimω(2)t (13)

allowing, again, the Navier–Stokes equations to be reduced to a system of steady
equations:(

−ν∇2 + inω(1) + imω(2)
)
c(2)
n,m +

+∞∑
k=−∞

+∞∑
`=−∞

c(2)
k,` · ∇c

(2)
n−k,m−` + ∇d(2)

n,m = 0 (14)

with the incompressibility conditions

∇ · c(2)
n,m = 0. (15)

The fact that the velocity vector and pressure are real now implies

c(2)
n,m = c(2)

−n,−m, d
(2)
n,m = d(2)

−n,−m. (16)

It remains to find first the right angular frequency ω(1) (or non-dimensionalized
frequency St(1)) and, secondly, to see whether the curve defined by (12) and (13)
reduces to a new limit cycle or whether it fills a T 2-torus.

5.3. Supercritical primary frequency

The model (8) indicates how to extract the ratio of the frequency of the basic
oscillations and that of their modulation from the direct simulation. The angular
frequency of the rapid oscillations in figure 12(c) is equal to the total angle along
the dashed circle in figure 12(a) turned during one full revolution along the ellipse
divided by the corresponding time. A quite accurate way to estimate the ratio of
both frequencies is to count the number of rapid oscillations for a certain number of
slow modulations improving the result by estimating the not quite finished part of the
rapid period by a quadratic interpolation. Consider for example figures 9(a) and 9(c).
Five minima delimiting four beatings are visible in both. In figure 9(a) corresponding
to point 9 in the symmetry plane we count 58.5 oscillations per 4 beatings, i.e. 14.63
oscillations per beating. The corresponding spectrum shows that the rapid oscillations
correspond to what we called temporarily Stsym, (symbol f1 in the figures of spectra).
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Figure 13. Strouhal number of the primary oscillations St(1) vs. the Reynolds number under and
above the secondary instability threshold (Re2 = 53) in the wake of the finite circular cylinder. At
supercritical Reynolds numbers the curves corresponding to St(1) + St(2) and to St(1) − St(2) have
been plotted. Their extrapolation to Re = 52 is a result of an actual simulation (see the text).
(L/d = 21.4.)

As a result we find Stsym/St
(2) = 14.63. In contrast, in figure 9(c), obtained at point 7

downstream of the cylinder end, we find only 54.7 oscillations per modulation period
which yields a ratio of 13.67 periods per modulation. Here, however, the frequency of
rapid oscillations is no longer Stsym but Stsym−St(2) as shown in figure 10(c) (the peak
labelled ‘f1 − f2’). (Stsym − St(2))/St(2) = 13.67 and so we find now Stsym/St

(2) = 14.67
which is, within the errors of the estimation used, the same ratio as that found at
point 9.

Having shown that the same frequency ratio can be recovered independently of
the point at which we analyse the signal, we have to make sure that Stsym and not,
perhaps, Stsym±St(2) is the right frequency St(1). To see this it is sufficient to make sure
that this frequency evolves in a continuous way from the primary instability frequency
obtained at Reynolds numbers below the secondary instability threshold. In figure 13
we plot seven Strouhal number values obtained from our simulations in the symmetry
plane (z = 0). Four of them (Re = 45, 47, 49, 52) correspond to Reynolds numbers
below the secondary instability threshold where only one frequency is present in the
wake. At Re = 54, 58 and 62 we plot the St(1) values identified as Stsym above. To
make it clear that no ambiguity can arise we also plot the values St(1) ± St(2). The
subcritical value of St(2) at Re = 52 (dashed lines) could be obtained from the signal
in figure 7(b). The modulation vanishes more slowly than numerical transients, is
clearly visible and its frequency can be roughly estimated. We can see that only
the St(1) curve can be considered continuous. The unambiguous determination of
the right supercritical St(1) value is due to the Hopf-like character of the secondary
bifurcation with its non-zero critical frequency. We thus confirm rigorously the
known experimental fact that, for low Reynolds numbers (close to the onset of the
vortex shedding), the right Strouhal number yielding a continuous Roshko law is that
originating from the symmetry plane of the flow (Gerich & Eckelmann 1982), where
the main frequency St(1) dominates in the widest Reynolds number interval.

The difference due to the addition or subtraction of St(2) clearly dominates the
kink visible on the St(1) curve in figure 13 at the critical Reynolds number value of
53. This kink is not explainable by numerical errors of processing of the simulated
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Reynolds number 52 54 58 62 100

St(1)/St(2) ≈ 18 16.97 15.36 14.63 ≈ 10

Table 2. Values of the primary-to-secondary frequency ratio for a varying Reynolds number and
L/d = 21.4. The values for Re = 52 and Re = 100 are estimates. At the subcritical Reynolds
number value of 52 the flow is transient, at Re = 100 the estimate is obtained from an imperfectly
reached limit torus.

data and is of physical nature. It can be interpreted as the shift of the primary
instability frequency due to the secondary instability development. The value of St(1)

at Re = 52 corresponds to very small amplitudes of the secondary instability and can
be considered as that of the unperturbed primary instability, whereas that plotted
at Re = 54 corresponds already to the asymptotic state at the limit torus (saturated
secondary instability).

5.4. Incommensurate frequencies

To prove that the attractor is not just a new limit cycle but really a torus it has to
be shown that the values St(1) and St(2) (or ω(1) and ω(2)) are incommensurate. This
would be hard to prove rigorously for one fixed Reynolds number value. Moreover
and more importantly, it has to be shown that in a wide interval of Reynolds number
values the frequencies do not ‘lock in’ with a fixed rational ratio. The simulations for
a varying Reynolds number yield a ratio ω(1)/ω(2) decreasing continuously with the
Reynolds number (table 2).

Note the good agreement of the values in table 2 with the ‘4-group mode’ prediction
of Sirovich (1985) obtained by a very simple theory based merely on such classical
experimental laws valid for the infinite cylinder as the Roshko law and the drag
vs. Reynolds number dependence. For Re = 58 the inverse ratio ω(2)/ω(1) given by
Sirovich (1985) is 0.064 which is to be compared to our 1/15.36 = 0.065. Also the
remaining values fall very close to the curve of figure 4 of Sirovich (1985).

No lock-in trend exists. The toroidal topology of the attractor can, of course, be
illustrated by plotting a Poincaré section of the manifold described in three dimensions
by the three velocity components at a fixed point of the flow (figure 14). An extremely
long simulation would be necessary to obtain a really continuous section.

6. Spatial description of the secondary instability T 2-torus
6.1. Computation of the Fourier modes

In the same way as for a limit cycle, the full spatial description of the limit torus
of the secondary instability is given by complex functions of space representing the
coefficients of its double Fourier decomposition (12). The direct Navier–Stokes so-
lution yields the torus only in the limit of an infinitely long simulated time when
the whole T 2-surface is filled by the flow trajectory. As a consequence a finite
computer run can provide only an approximation. We shall limit ourselves to
presenting only the main Fourier components n = 0,±1 and m = 0,±1 of the
development (12), i.e. the mean value and the fundamental of the primary and
secondary instability. These are obtainable with a sufficient accuracy by analysing
the flow over only one secondary instability period because of the rather high
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value of the primary to secondary instability frequency ratio at low Reynolds
numbers.

The spatial analysis presented in this section concerns the circular cylinder wake at
Re = 54. At this Reynolds number the ratio of the frequencies ω(1)/ω(2) is about 17.

We can therefore consider the factor eimω(2)t in the Fourier expansion (12) as constant
over one period T (1) = 2π/ω(1) of the rapid oscillations as long as the harmonic m
considered is low. Moreover, less than 2% above the threshold, the fundamental of the
secondary instability largely dominates higher harmonics. As a consequence, the error
of the mean value and of the primary fundamental computed over the period T (1) can
be estimated not to exceed 10%. On the basis of these considerations we proceeded
in the following way. We kept the on-line processing algorithm presented in §3 above
the secondary instability threshold. The ‘time clock’ for the period determination was
still based on the v-velocity oscillations at a point in the symmetry plane (point 9
of table 1). At this point, so close to the secondary instability threshold, the period
fluctuations are insignificant (0.35%): the ‘instantaneous’ period computed at this
point is thus quite accurately T (1).

The primary instability Fourier coefficient integration was triggered for a number of
successive periods covering one secondary instability period T (2) = 2π/ω(2), i.e. more
than 17 in this case, and the space fields of the coefficients cn for n = −2,−1, 0, 1
and 2 were stored at each period T (1). The complex fields obtained vary in time
over one secondary instability period and represent the destabilized primary limit
cycle. They can be considered as discretized values of instantaneous primary insta-
bility Fourier coefficients and the secondary Fourier analysis (11) can be applied to
them. (Actually only the mean value, m = 0, and the first harmonic, m = ±1, were
computed.) If we limit ourselves to |m| 6 1 and |n| 6 1 and disregard the pres-
sure Fourier coefficients we obtain 12 independent complex functions corresponding
to (n, m) = (1, 0), (0, 1), (1, 1) and (1,−1) and three real functions corresponding to
the mean value n = 0, m = 0 (three components u, v and w for each pair of
Fourier expansion indices). In what follows we present some of their most important
aspects.
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Figure 15. (a) Comparison of the iso-amplitude plot of the transverse (v) velocity component
fundamental cv,1 in the plane containing the cylinder axis below the secondary instability threshold
(Re = 49) and (b) of the mean fundamental cv,1,0 above the secondary instability threshold (Re = 54).
(L/d = 21.4.)

6.2. Mean limit cycle (m = 0)

The Fourier modes with m = 0 are the mean values of the primary instability Fourier
harmonics over one beating. They can be considered as describing the average limit
cycle and are a continuation of the subcritical Fourier harmonics in the same way as
the mean flow evolves continuously from the steady subcritical flow at the primary
bifurcation. As a result, the (real) vector c0,0 describing the mean flow is still similar
to the primary instability mean flow (and the subcritical steady flow) and also the
mean fundamental c1,0 is expected to be very similar to c1 obtained at Re < Re2

in §3 (figures 4–6). This is, indeed, the case as can be seen if the mean primary
instability fundamental cv,1,0 at Re = 54 is compared to the subcritical fundamental
cv,1 (figure 15). The similarity of the plots in figure 15 provides additional proof of
the correctness of the continuation of the primary instability frequency St(1) above
the secondary instability threshold because if we had based our decomposition on,
say, St(1) − St(2) we would have found significantly different shapes (see figure 17).

6.3. Secondary-instability fundamental harmonic

The amplitude envelopes of oscillations arising due to the secondary instability are
represented in figures 16 and 17. At the secondary instability the mean values over
one primary period 1/St(1) start to oscillate with the frequency St(2). The envelopes of
oscillations of the streamwise velocity component u (i.e. the modulus of the Fourier
mode cu,0,1) are plotted in figure 16. The figure 16(a) shows a distinct maximum of
the represented Fourier mode at z = 3 (halfway between the symmetry plane and
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Figure 16. Iso-amplitude plot of the oscillations of the streamwise velocity at the frequency St(2)

(modulus of the Fourier mode cu,0,1). (a) The plane containing the cylinder axis, (b) the plane z = 3
normal to the cylinder axis.(Re = 54, L/d = 21.4.)

cylinder end). The transverse structure (figure 16b) of the mode is similar to that
of the mean velocity correction observed at the primary instability in the cylinder
wake (Dušek 1996). The same spanwise structure as in figure 16 is obtained for the
spanwise velocity oscillations at the same frequency or if the amplitude envelope of
the transverse velocity oscillations at the St(2) frequency (modulus of the mode cv,0,1)
is represented in the y = 0.5 plane. (This Fourier mode is antisymmetric with respect
to the y = 0 plane and so a plane y 6= 0 has to be chosen.) For all three velocity
components of the Fourier mode n = 0, m = 1 a maximum situated between z = 3
and z = 4 is observable.

The Fourier mode cv,1,−1 describes the lateral peak of the primary fundamental
shown to be responsible for the experimentally observed continuous spanwise evolu-
tion of the ‘local’ frequency from St(1) to St(1) − St(2) (see §5). To have an accurate
reference we plot, in figure 18, the spectra obtained at Re = 54 at the same points
as in figure 10 where they correspond to Re = 62. Except that the lateral peak
St(1) − St(2) at points 8 and 7 (parts b and c) does not yet dominate the principal
peak St(1) because we are still close to the instability threshold, the spanwise trend
is the same. It can be compared to the spanwise structure shown in figures 15 (b)
and 17. Points 9, 8 and 7 corresponding to figure 18(a–c) lie along the x = 3.5 line,
approximately in the y = 0 plane at z = 0, z = 3.2 and z = 5.9, respectively. Whereas
the main peak St(1) decreases monotonically from a value exceeding 0.1 at the point
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Figure 17. Iso-amplitude plot of the oscillations of the transverse velocity at the frequency
St(1) − St(2) (modulus of the Fourier mode cv,1,−1) (a) in the plane containing the cylinder axis,
(b) in the plane z = 3 normal to the cylinder axis and passing through the mode maximum.
(Re = 54, L/d = 21.4).

in the symmetry plane (figure 18a) to about 0.04 downstream of the cylinder end
(figure 18c) the lateral peak St(1) − St(2) is about twice as high in the figure 18(b)
(point halfway between the symmetry plane and the cylinder end) than in figure 18(a),
(z = 0). The decrease towards the cylinder end is then, much slower than for the
main peak so that in figure 18(c) both peaks are almost equal and, in figure 10,
obtained higher above the threshold, the lateral peak dominates. The height of the
peaks in the spectra in figure 18 corresponds quite well to the global spatial plots
of figures 15 and 17. A slight underestimation is due to the limited resolution of
the spectra. In contrast, the lateral peak St(1) + St(2) has a monotonically decreasing
trend in the spanwise direction identical to that of the main peak so that the ratio of
both (roughly 10) remains practically constant. Indeed, the space plot of the spanwise
space structure of the envelope |cv,1,1| (not represented) is qualitatively the same as
in figure 15. The comparison of spectra in figures 10 and 18 and of the envelopes
of Fourier modes n = 1, m = 0 (figure 15) and n = 1, m = −1 (figure 17) also allows
the trend due to an increasing Reynolds number to be understood. The side mode
n = 1, m = −1 becomes progressively stronger than the main mode n = 1, m = 0 in
a wider spanwise zone of the wake, which accounts for the widening of the ‘affected’
zones downstream of the cylinder ends. Ultimately the central zone may disappear
and the lower frequency St(1) − St(2) may dominate.
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Figure 18. Spectra – absolute values of the Fourier transforms of v-velocity oscillations at
Re = 54 (L/d = 21.4) at the same points as in figure 10(a): at a point in the symmetry plane
(x = 3.5, y = −0.3, z = 0), (b) a point halfway between the symmetry plane and the cylinder end
in the spanwise direction (x = 3.5, y = 0, z = 3.2) and (c) a point downstream of the cylinder end
(x = 3.5, y = 0, z = 5.9). See also caption of figure 10.
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Strouhal number kx (in d−1, Phase velocity
Fourier mode St d is cylinder diameter) 2πSt/kx

cu,0,1 0.00876 0.050 1.1
cw,0,1 0.00876 0.043 1.3
cv,1,0 0.14866 0.966 0.96
cv,1,−1 0.13990 0.912 0.96

Table 3. Wavenumbers and phase velocities near the domain outflow for several Fourier modes of
the limit torus at Re = 54 and for the cylinder of aspect ratio L/d = 21.4.

The maxima of the Fourier modes n = 0, m = 1 and n = 1, m = −1 described above
lie in the zone of the velocity deficit due to the flow recirculation around the cylinder
end. This deficit is visible in figure 2(b) plotted at Re = 49. The unperturbed ‘basic’
flow of the secondary instability at the slightly higher Reynolds number of Re = 54
would be almost identical due to the small Reynolds number difference. As the result,
the secondary instability can be associated with this velocity deficit maximum in the
spanwise direction in the same way as the primary instability is associated with the
velocity deficit in the transverse direction.

6.4. Wavelength of the secondary-instability fundamental harmonic

It has been shown (Dušek 1996) that the primary-instability Fourier harmonics behave
asymptotically like plane waves with wavenumbers proportional to their order. It
means that all the harmonics have asymptotically the same phase velocity. Although
the extent of the domain considered in this simulation does not really provide access
to the far-wake characteristics it can been seen whether the primary and secondary
instabilities have a common phase velocity, i.e. whether the ratio of their wavenumbers
is roughly equal to the ratio of their frequencies. If this is the case the secondary
instability has to be expected to have an extremely long wavelength. At Re = 49 the
primary-instability fundamental wavelength seen in figure 6 is roughly equal to 3.3,
i.e. 5.8 cylinder diameters. Assuming that at Re = 54 it is only slightly shorter and
taking into account the ratio St(1)/St(2) of about 17 the expected secondary instability
wavelength of about 100 cylinder diameters greatly exceeds the computational domain
length.

In spite of this fact, the wavenumber can easily be computed as the phase gradient.
Along the flow axis (y = 0, z = 0), its only non-zero component is kx = ∂ϕ/∂x and
this component is also the most significant elsewhere except very close to the cylinder.
To investigate simultaneously the primary and secondary instability wavelengths we
computed kx along the line z = 3, y = 0 for the Fourier modes cu,0,1, cw,0,1 (fluctuations
of the primary-instability mean values of the u- and w-velocity components) and for
cv,1,0 and cv,1,−1 (Fourier modes corresponding to the frequencies St(1) and St(1)−St(2)).
The streamwise wavenumber (kx) values near the domain outflow are presented in
table 3. The agreement with expectation is quite satisfactory. In particular, the phase
velocity values for the slowly oscillating modes cu,0,1 and cw,0,1 represent a good test
taking account of the small values of the corresponding wavenumbers. It is also
satisfactory to find the difference of the wavenumbers of Fourier modes cv,1,0 and
cv,1,−1 (0.054 d−1) comparable to the wavenumbers of the slow modes cu,0,1 and cw,0,1.
The value of the phase velocity slightly smaller than one is in agreement with two-
dimensional simulations (Dušek 1996) and experimental measurements for a cylinder
with a high aspect ratio (Williamson 1989) at comparable Reynolds numbers.
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The secondary-instability wavelength is experimentally observable on the stream-
wise modulation of the vortex shedding pattern. It can be associated with the
streamwise lengthscale of the vortex splitting at the limit of the affected and unaf-
fected zones visible in figure 2 of Eisenlohr & Eckelmann (1989).

6.5. Spatial structure of the Fourier modes and wake observations

We have already said that not only the ‘mean’ Fourier modes cn,0 but also the
harmonics of oscillations of the ‘mean value’ c0,m have the same shape of envelopes in
the transverse (z = const) planes as their primary homologues cn and c0. This seems
to be the case, more generally, for any n and m, i.e. the transverse shape of the Fourier
mode envelopes of cn,m is similar to that of the nth primary instability harmonic. As
the result, the secondary instability can be interpreted as a splitting of the primary
harmonics into a series of secondary harmonics each having the transverse structure
of the primary one. The analysis of the flow oscillations at the primary frequencies
(n, 0) as well as at the secondary one (n, m) yields the same transverse picture of
the wake, which explains why the switching from one to another does not change
the observed transverse wake structure. In contrast, the spanwise structure of some
secondary Fourier modes is different from that of the primary modes. Whereas the
primary Fourier mode n = 1 below the secondary-instability threshold as well as its
‘mean’ (n = 1, m = 0) above the threshold (figure 16) reach their maximum in the
z = 0 symmetry plane and decay progressively towards the cylinder ends, modes
arising due to the secondary instability onset (e.g. n = 0, m = 1 in figure 17, or n = 1,
m = −1 in figure 18) have a maximum off the symmetry plane (about half the distance
between the symmetry plane and the cylinder end). For this reason, in the proximity
of the symmetry plane z = 0 the primary fundamental Fourier mode (1,0) dominates,
whereas farther from this plane it is overshadowed by the secondary one (1,−1).

This effect may be explained by the trend to lower frequencies toward the ends
of the obstacle. It is not necessary for the cylinder end to be tapered to think of
the argument of Gaster (1969) concerning slender cones. The molecular diffusion
smooths the sudden diameter variation at the cylinder end and a shallower wake
with a similar transverse structure exists even off the cylinder span (see figure 5).
For real cones this trend may make several lower frequency modes m = −1,−2,...
progressively dominate. As a result the idea of Gaster that lower frequencies are
to be associated with local Reynolds numbers is qualitatively right except that the
phenomenon occurs in a discrete way, as confirmed by later observations for cones
(König 1993) as well as for cylinders (e.g. König et al. 1993).

6.6. Description of the transition to a limit torus

In Carte et al. (1995, 1996) a mathematical formulation to compute the transition
to a limit cycle starting from an arbitrary initial condition has been given. In two
dimensions it has even been shown that the formulation presented provides an efficient
computing method (Carte et al. 1995). A similar formulation can be written for the
limit torus and can be expected to provide a tool for a direct computation of its
Fourier modes as well as for the transients characterizing the decay of the primary
limit cycle.

Consider initial double Fourier expansions of the type (12) and (13) with time-
dependent Fourier coefficients and time-dependent angular frequencies ω1 and ω2:

v(t, .) =

+∞∑
m=−∞

+∞∑
n=−∞

cn,m(t, .)einω1teimω2t (17)
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and

p(t, .) =

+∞∑
m=−∞

+∞∑
n=−∞

dn,m(t, .)einω1teimω2t. (18)

By the same reasoning as in Carte et al. (1995) it can be shown that this expansion
satisfies the Navier–Stokes equations if its coefficients satisfy the system of unsteady
equations

∂cn,m

∂t
+

(
− 1

Re
∇2 + inω1 + imω2

)
cn,m +

+∞∑
k=−∞

+∞∑
`=−∞

ck,` · ∇cn−k,m−` + ∇dn,m = 0, (19)

∇ · cn,m = 0. (20)

If the limit torus is approached and the angular frequencies do not have the right
instantaneous values the differences between the right values and those appearing
in (17), (18) and (19) will yield, in general, a biperiodic movement of the Fourier
coefficients in the complex plane. However, the Fourier modes n = 1, m = 0 and
n = 0, m = 1 will simply rotate, their angular frequency corresponding to the difference
between the exact and used values of ω1 and ω2, respectively. The angular frequencies
of the double Fourier expansion can then be updated using analogous constraints as
in the limit cycle case. We can require for example that

∂

∂t

[
c1,0,v(t,~x1)

|c1,0,v(t,~x1)|

]
= 0, (21)

and
∂

∂t

[
c0,1,u(t,~x2)

|c0,1,u(t,~x2)|

]
= 0, (22)

i.e. that selected components of the mode n = 1, m = 0 at a fixed point x1, chosen near
the primary-instability maximum, and of the mode n = 0, m = 1 at a point x2, chosen
near the secondary-instability maximum, do not rotate in the complex plane and use
these constraint for updating the angular frequencies ω1 and ω2. The system (19)–(22)
becomes steady on the torus and describes the transition from a fairly arbitrary initial
condition, not too distant from the attractor, to the limit torus.

7. Aspect ratio influence
To estimate the trends associated with the change of the aspect ratio of the obstacle

we carried out simulations, in very similar conditions, for a cylinder with half the
aspect ratio, L/d = 10.7. A full domain was used to test, at the same time, the
symmetry with respect to the z = 0 plane.

Simulations at Re=62, 80 and 100 have been run. For the first two Reynolds
numbers values the wake has been found monoperiodic; only at Re = 100 has
the onset of the secondary instability been observed, allowing the secondary critical
Reynolds number to be put roughly at Re2 = 90, which is considerably higher than
for the cylinder with twice the aspect ratio.

To provide a good basis of comparison a simulation on the cylinder with L/d = 21.4
at Re = 100 has also been made.

The comparison of primary Strouhal numbers St(1) for both configurations at
Re = 62 and Re = 100 as well as of secondary Strouhal numbers St(2) at Re = 100 is
given in table 4. The Roshko law (Roshko 1954) applied to the modulation frequency
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Re2 St(1)|Re=62 St(1)|Re=100 St(2)|Re=100 St(1)/St(2)|Re=100

L/d = 21.4 53 0.1520 0.1646 ≈ 0.016 ≈ 10
L/d = 10.7 ≈ 90 0.1472 0.1476 0.01287 11.47

Table 4. Comparison of the primary and secondary Strouhal numbers for cylinders with
L/d = 21.4 and L/d = 10.7

f and the spanwise length L of the cylinder would suggest that a Reynolds number
UL/ν based on the cylinder length, the inflow velocity U and the viscosity ν should
yield a practically constant Strouhal number fL/U at the diameter-based Reynolds
numbers and aspect ratios considered here. As a result, a modulation frequency f
inversely proportional to the aspect ratio would be expected. As pointed out by
Gaster (1969), instead a proportionality law between fL/U and UL/ν holds, giving
a modulation frequency independent of the aspect ratio is obtained. The trend found
(see table 4) lies somewhere in between. A slight trend of the secondary-instability
frequency to decrease if the diameter based-Reynolds number is fixed and the aspect
ratio increases seems to exist but is weaker than what the Roshko law would predict.

The primary Strouhal numbers found at Re = 62 and Re = 100 show that
the shorter the cylinder the flatter the Strouhal vs. Reynolds number dependence.
Actually the longer cylinder with L/d=21.4 yields a significantly smaller variation
∆St/∆Re = 3.3 × 10−4 than for an infinite configuration (∆St/∆Re = 6.4 × 10−4 in
the same Reynolds number range – see Williamson 1989). The variation obtained for
L/d = 10.7 appears to be quite insignificant. For a given, significantly supercritical,
Reynolds number this trend results in a significant decrease of the primary Strouhal
number (see the values of St(1) at Re = 100 in table 4). This seems to be in agreement
with experimental observation (Gerich & Eckelmann 1982).

The data obtained by simulation do not allow one to see accurately if the aspect
ratio influences the primary to secondary frequency ratio St(1)/St(2). The very ap-
proximate estimation made at Re = 100 for the larger aspect ratio indicates that
the difference if any is likely to be very small. This would be in agreement with
the theory of Sirovich (1985) mentioned already in §5.4. For both aspect ratios
considered the infinite cylinder experimental laws used by Sirovich remain valid and
a practically aspect-ratio-independent value of St(1)/St(2) is thus to be expected. This
conclusion seems to be supported, moreover, by the fact that the well-established
ratio St(2)/St(1) = 1/11.47 = 0.087 obtained for L/d=10.7 at Re = 100 (see table 4) is
quite close to the curve of ‘4-group mode’ of Sirovich (1985).

The level of the primary instability for both aspect ratios at comparable Reynolds
numbers does not differ very much either. Table 5 shows that the oscillation amplitude
(its mean value for cases where the secondary instability has developed) is practically
the same for both aspect ratios at corresponding positions obtained by rescaling the
z-axis with respect to the cylinder length. This may be attributed to the fact that the
threshold of the primary instability is relatively weakly dependent on the aspect ratio
variation considered (Mathis 1983).

A substantial part of previous investigations has been devoted to the spatial aspects
of the secondary instability. To provide a rapid comparison of the overall trends we
plotted an analogue of figures 10 and 18. In figure 19 the spectra of the v-velocity
signals at a point in the symmetry plane z = 0 (19a) at L/4 off this plane (19b) and a
point downstream of the cylinder end (19c) are plotted. The asymmetry of the lateral
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z = 0 z ≈ L/4 z ≈ L/2
Re = 62
L/d = 21.4 0.40 0.23 0.041
L/d = 10.7 0.40 0.31 0.083

Re = 100
L/d = 21.4 0.53 0.42 0.33
L/d = 10.7 0.51 0.47 0.36

Table 5. Primary instability amplitudes (average amplitudes of oscillations above the secondary
instability threshold) for L/d = 21.4 and L/d = 10.7 and two different Reynolds number values at
three points lying at x = 3.5, y = 0 and, respectively, in the symmetry plane z = 0 about halfway
between the cylinder end and the symmetry plane (z = 3.2 for L = 12 and z = 1.3 for L = 6) and
downstream of the cylinder end (z = 5.9 for L = 12 and z = 2.9 for L = 6).

peaks, and thus the trend to the formation of affected zones is less pronounced. In
contrast with the larger aspect ratio (figure 18) the frequency peak St(1)+St(2) is higher
than that corresponding to St(1)−St(2). The trend of the lower-frequency peak to vanish
more slowly than the higher-frequency one is still visible, but the ratio of the main peak
to the lateral ones seems rather to increase with the distance from the symmetry plane.

The presence of the second harmonic in the y = 0 symmetry plane (plane containing
the cylinder axis) in 19(b) and especially in the 19(c) observable to a lesser degree
also for L/d=21.4 (figures 10c and 18c) is not physical and is to be attributed to an
insufficient resolution at element interfaces. (The plane y = 0 corresponds to element
interfaces, see figure 1.)

8. Conclusions
The results of our theoretical analysis of the simulation of the three-dimensional

wake of a finite cylinder provide an interpretation of some experimentally observed
three-dimensional effects in terms of a secondary instability. The description of the
finite cylinder wake dynamics in terms of a T 2-torus is not in contradiction with
existing observations and provides a theoretical framework for the understanding of
most observed phenomena.

A number of interesting questions that could not be tackled in the present paper
arise. They are related to the behaviour of wakes of other finite objects. For cones
a number of spanwise zones with local dominant frequencies decreasing proportion-
ally to the decrease of the local diameter has been reported (Gaster 1971). These
zones have been recognized as characterized by discrete decreasing non-dimensional
frequencies (König 1993) which might be described in the notation of the present
paper as St(1) − mSt(2) with m increasing towards the cone tip. This would mean
that, depending on the form of the obstacle, a certain number of Fourier modes (12)
and (13) for n = 1 and increasingly negative m become dominant along the cone
span. The wake of cylinders with end plates behaves much in the same way as that
of cylinders with free ends (Gerich & Eckelmann 1982) although, at first sight, the
spanwise velocity profiles are considerably different. The case of cylinders between
plates or solid walls should be investigated to see if a similar mechanism, possibly
the horseshoe vortices, explains the onset of a secondary instability and beatings. A
particularly interesting subject consists of making an exhaustive study of wakes for
cylinders or any other objects of variable aspect ratio.
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Figure 19. Spectra – absolute values of the Fourier transforms v-velocity oscillations at Re = 100
for the cylinder with aspect ratio L/d=10.7 (L = 6) at (a) a point in the symmetry plane
(x = 3.5, y = −0.3, z = 0), (b) a point about halfway between the symmetry plane and the
cylinder end in the spanwise direction (x = 3.5, y = 0, z = 1.3) and (c) a point downstream of the
cylinder end (x = 3.5, y = 0, z = 2.9). (f1 stands for St(1) and f2 for St(2).)
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We believe the behaviour analysed in this paper to be typical for early stages
of transition to turbulence in the wake of finite objects. The typical Bénard–von
Kármán limit cycle characterizing the primary instability is shown to decay, very
early for cylinders with large aspect ratio, into a limit torus, explaining the quasi-
periodicity observed in the wake. The final transition remains an open question.
All that can be said so far is that the chance of a rapid transition to turbulence is
quite high in view of the RTN theory (Newhouse et al. 1978 and Ruelle & Takens
1971) because only one more subsequent Hopf-like bifurcation of the same type as
the secondary one should be expected to yield an unstable attractor. However, a
direct transition of the Curry–Yorke type (see Bergé, Pomeau & Vidal 1988) or any
other type of decay of the limit torus is possible. It is difficult to investigate these
stages of transition by current direct Navier–Stokes solving techniques, in which all
effects are superimposed and in which refined data concerning the system dynamics
have to paid for by extremely long computer runs. A possible alternative might be
a numerical implementation of the direct Fourier mode computation suggested in
§6 where the destabilization of the T 2-torus would be made explicit. Our present
simulations showed that a qualitatively different dynamics (T 3-torus, turbulence?)
sets in at Re ≈ 120 for the circular cylinder and at Re ≈ 150 for the NACA wing
with the discretization used in this paper.

This work was supported by the French Programme National de Déterminisme du
Recrutement. The computations have been performed at the Centre de Ressources
Technologiques Mathématiques et Industrielles of the Université de Toulon et du Var.
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